ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI.

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS I :

THEORY OF EQUATIONS, MATRICES, FINITE DIFFERENCES, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

Prepared by Dr.V.P.ANUJA

ALLIED MATHEMATICS - I

THEORY OF EQUATIONS, MATRICES, FINITE DIFFERENCES, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

<u>Unit I</u>

1. $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n = 0$ is called an of the ^{nth} degree, if $a_0 \neq 0$.			
(Ans : Algebraic Equation).			
2. If an equation $f(x) = 0$ remains unaitered when x is changed to 1/x, then it is called a (A rest D science of F subscience)			
(Ans: Keciprocal Equation).			
5. If $f(x) = 0$ is a polynomial equation and if $f(a) \ll f(b)$ are different sign, then			
(Ans : Atleast one root nes between a \propto D).			
4. If $f(x) = 0$ has no real root between a & b then $f(a) \& f(b)$ are (Ans: Same sign).			
5. In a polynomial with real coefficients, imaginary roots occurs in			
(Ans: Conjugate Pairs).			
6. Write an iterative formula for Newton's method. (Ans: $\alpha_{r+1} = \alpha_r - f(\alpha_r)/f(\alpha_r)$).			
7. Every polynomial equation of the n th degree has exactlyroots. (Ans: n).			
8. $f(x) = (x - \alpha_1)\phi_1(x)$ where $\phi_1(x)$ is an algebraic equation ofdegree.			
$(Ans: (n-1)^{m}).$			
9. Say True or False: The roots of the given equation are diminished by h, where $h = sum$			
of the roots/factor. (Ans: False).			
10.Say True or False: Reciprocal equation of even degree with unlike signs for its its			
coefficients, therefore x^2 -1 is a factor. (Ans: True).			
11. If $x^5-5x^4+9x^3+ax^2+bx-1 = 0$ is a reciprocal equation find a,b. (Ans : $a = -1, b = 5$).			
12. If α_1 , α_2 ,, α_n be the roots of the equation $a_0x^n + a_1x^{n-1} + + a_n = 0$ transform the			
equation whose roots are $-\alpha_1$, $-\alpha_2$,, $-\alpha_n$. (Ans : $a_0x^n - a_1x^{n-1} + + (-1)^n a_n = 0$).			
13. If α_1 , α_2 ,, α_n be the roots of the equation $a_0x^n + a_1x^{n-1} + + a_n = 0$ transform the			
equation whose roots are $1/\alpha_1$, $1/\alpha_2$,, $1/\alpha_n$. (Ans: $a_0x^n + a_1x^{n-1} + + a_n = 0$).			
14. If α_1 , α_2 ,, α_n be the roots of the equation $a_0x^n + a_1x^{n-1} + + a_n = 0$ transform the			
equation whose roots are $k\alpha_1, k\alpha_2, \dots, k\alpha_n$. (Ans : $a_0x^n + ka_1x^{n-1} + \dots + k^na_n = 0$).			
15. Form the quadratic equation one root is $\sqrt{2}$. (Ans: $x^2-2 = 0$).			
16. Form the quadratic equation one root is $1 + i$. (Ans: $x^2-2x-2 = 0$).			
17. Find the sum of the roots of the equation $x^3+px^2+qx+r=0$. (Ans: -p).			
18. Find the product of the roots of the equation $x^3+px^2+qx+r=0$. (Ans: -r).			
19. Reciprocal equation of odd degree with unlike signs for its its coefficients, therefore			

----- is a root.

20. Reciprocal equation of even degree with unlike signs for its its coefficients, therefore ----- is a root. (Ans: 1,-1).

Unit II

21. A matrix A for which $A^{k+1} = A$ is called------ where k is a positive integer.

(Ans: Periodic).

22. A square matrix A is called ----- if $A^2 = A$. (Ans: Idempotent). 23. As the rank of every non zero matrix is greater than or equal to one, to assign the rank-----. (Ans : Zero). 24. Rank of a matrix is unaltered by elementary------. (Ans : Transformation). 25. ----- is the normal form of the unit matrix. (Ans : Canonical form). 26. Say True or False : The rank of every n- rowed non singular matrix is n. (Ans: True). 27. Say True or False : The rank of A≤r if all minors of order (r+1) are zero.(Ans: True). 28. Say True or False : The inverse of a matrix, if it is exists, is zero. .(Ans: True). 29.Say True or False : The operation of transposing and inverting are additive. (Ans: False). 30. Say True or False : The inverse of a matrix of A = adj A/|A|. (Ans: True). 31. A diagonal matrix all of whose diagonal elements are equal, is acalled a ------. (Ans: Scalar matrix). 32. If $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ then the order of the matrix A is -----. (Ans: 2). 33. A square matrix $A = [a_{ii}]$ is said to be skew symmetric if ------. (Ans: $a_{ii} = -a_{ii}$). (Ans: $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 2 & 6 \end{bmatrix}$). 34.If A = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ then the value of A^T = -----. 35. If A = $\begin{bmatrix} 2+i & 1-i \\ 5 & 7 \end{bmatrix}$ then the value of \overline{A} = -----. (Ans: $\begin{bmatrix} 2-i & 1+i \\ 5 & 7 \end{bmatrix}$). 36. Say True or False: Every diagonal element of a Hermitian matrix is real (Ans: True). (Ans: $\begin{bmatrix} 12 & 14 \\ 10 & 12 \\ 22 & 24 \end{bmatrix}$). 37. Find AB, if A = $\begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 3 & 2 \end{bmatrix}$ B = $\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ ------. 38. If $r(A) \neq r(A, B)$, then the equations are------. (Ans: Inconsistent).

39. If $r(A) = r(A, B) < n$, then the equations are		(Ans: Inconsistent).
40. Find the rank of a matrix	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$	(Ans: 3).

<u>Unit III</u>

41 is the process of computing intermediate values of a function.
(Ans : Interpolation)
42 is used to find the values outside the interval. (Ans : Extrapolation)
43. In interpolation , the symbol Δ denotes an operation calledoperator.
(Ans : Forward difference)
44. In interpolation, the symbol ∇ denotes an operation calledoperator.
(Ans : Backward difference)
45. In the difference table, the first differences of y are denoted by (Ans: Δy)
46. In the difference table, Δ^2 is an operator called , forward difference operator
(Ans : Second order)
47. The first order forward difference $\Delta y_0 = $ (Ans : $y_1 - y_0$)
48. The second order forward difference $\Delta^2 y_0 = $ (Ans : $\Delta y_1 - \Delta y_0$)
49. The third order forward difference $\Delta^3 y_1 = $ (Ans : $\Delta^2 y_2 - \Delta^2 y_1$)
50.y = f(x) is a given function of x, the independent variable x is called
and the dependent variable y is called (Ans : argument , entry)
51. Gregory Newton's f interpolation formula is used only for intervals
(Ans : Equal)
52.In interpolation, we can find the missing values of x using the operator
$__\and __\ (Ans: \Delta, E)$
53. The value of $\nabla y_2 = $ (Ans : $y_2 - y_1$)
(Say true or false)
54. The shifting operator $E = 1 + \Delta$ (Ans : True)
(Say true or false)
55. The operator $E^{-1} = 1 - \nabla$ (Ans : True)
56. The values of the independent variable are not equally spaced we will use
(Ans : Lagrange's formula)

57. The value y_0 is called the leading term and the differences $\Delta y_0, \Delta^2 y_0, \Delta^3 y_0...$ are called ______ (Ans : Leading differences) 58. If y(x) is a polynomial of nth degree $\Delta^{n+1}y_0,...$ are _____ (Ans : Zero) 59. The arguments are $x_0, x_0+h, x_0+2h,...$, here h is called ______ (Ans : interval of differencing)

(Say true or false)(Ans : True)60.The operators Δ , ∇ , E are linear operators(Ans : True)

<u>Unit IV</u>

61.The value of sinhx =	$(\operatorname{Ans}:\frac{e^{x}-e^{-x}}{2})$
62. The value of $\cosh x = $	$(Ans:\frac{e^{x}+e^{-x}}{2})$
63. The value of $tanhx = $	(Ans: $\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$)
64.The value of $\cot hx =$	(Ans: $\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$)
65. The value of $\cosh x - \sinh x = $	(Ans : e ^{-x})
66. The value of $\cosh x + \sinh x =$	(Ans : e ^x)
67. The value of $\cosh^2 x + \sinh^2 x = $	(Ans : cosh2x)
68. The value of $\cosh^2 x - \sinh^2 x = $	(Ans:1)
69. The value of sin(ix) =	(Ans: i sinhx)
70. The value of $\cos(ix) = $	(Ans: coshx)
71. The value of $tan(ix) = $	(Ans:itanhx)
72. The value of $\sinh 0 = $	(Ans:0)
73. The value of $\cosh \theta = $	(Ans:1)
74. The value of $tanh0 = $	(Ans:0)

75. The value of $\sinh 2x = $ (Ans :	2 sinhx coshx)		
76. The value of $\sinh(-x) = $	(Ans : - sinhx)		
77. The value of $\cosh(-x) = $	(Ans: coshx)		
78. The value of $\sinh^{-1}x =$ (Ans : log	$e(\mathbf{x}+\sqrt{x^2+1})$		
79. The value of $\cosh^{-1}y =$ (Ans : log	$g(y+\sqrt{y^2-1})$		
80. The value of $\tanh^{-1}y =$ (Ar	$\operatorname{ns}: \frac{1}{2} \log\left(\frac{1+y}{1-y}\right)$		
<u>Unit V</u>			
81. If $x = r \cos \theta$ and $y = r \sin \theta$, then the jacobian value is	(Ans : r)		
82is the equation of the conic in general. (Ans	$\frac{l}{r} = 1 + e \cos \theta$		
83.In the general conic equation, if it is an ellipse	(Ans : e < 1)		
84.In the general conic equation, if $e = 1$ it is a (A)	Ans : parabola)		
85.In the general conic equation, if it is an hyperbola	(Ans : e > 1)		
86.In the general conic equation, if $e = \sqrt{2}$ it is a			
(Ans : rectangular hyperbola)			
87. The reciprocal of the curvature of a curve at any point is called the			
of curvature 88 Find the radius of curvature at $x = \frac{\pi}{2}$ on the curve $x = \sin x$ is	(Ans: radius)		
30. Find the radius of curvature at $x = \frac{1}{2}$ on the curve y = sinx is	(AIIS1)		
89.Curvature of a curve $y=f(x)$ is defined as	$(Ans: \frac{dr}{ds})$		
90. The radius of curvature of a curve $y = f(x)$ is defined as	$(Ans: \frac{ds}{d\Psi})$		
91. The curvature of a circle of diameter d is	$(Ans:\frac{2}{d})$		
92. The curvature of the curve $x^2 + y^2 = r^2$ is	$(Ans:\frac{1}{r})$		

93. If $x + y = u$, $2x - 3y = v$ find J?	$(Ans:\frac{-1}{5})$
94. The curvature of the straight line $y = mx+c$ is	(Ans : 0)
95. The radius of curvature of the straight line ax+by+c=0 is	(Ans :∞)
96. If x=r cos θ and y=r sin θ then the value of $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)} =$	(Ans:1)
97. The radius of curvature of $y = sinx$ is	(Ans : -1)
98. The radius of curvature of the curve $x=2\cos\theta$, $y=2\sin\theta$ is	(Ans : 2)
99. The radius of curvature of the curve $y=\cos x$ at (0,1) is	(Ans : -1)
100. The radius of curvature of the curve y=4sinx at x= $\frac{\pi}{2}$ is	$(Ans:\frac{-1}{4})$

Lelenad

Dr.K.MEENA M.Sc., M.Phil., PGDCA., Ph.D., Assistant Professor and Head Department of Mathematics Arulmigu Palaniadavar Arts College for Women, Chinakalayamputhur, Palani-624615

VPA-P

Staff in charge

Signature of the HoD with Seal