ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI.

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS I :
THEORY OF EQUATIONS, MATRICES, FINITE DIFFERENCES,
TRIGONOMETRY AND DIFFERENTIAL CALCULUS

Prepared by
Dr.V.P.ANUJA

ALLIED MATHEMATICS - I

THEORY OF EQUATIONS, MATRICES, FINITE DIFFERENCES, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

Unit I

1. $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ is called an \qquad
(Ans : Algebraic Equation).
2. If an equation $f(x)=0$ remains unaltered when x is changed to $1 / x$, then it is called a
\qquad (Ans: Reciprocal Equation).
3. If $f(x)=0$ is a polynomial equation and if $f(a) \& f(b)$ are different sign, then- \qquad
(Ans : Atleast one root lies between a \& b).
4. If $f(x)=0$ has no real root between $a \& b$ then $f(a) \& f(b)$ are------. (Ans: Same sign).
5. In a polynomial with real coefficients, imaginary roots occurs in \qquad
(Ans: Conjugate Pairs).
6. Write an iterative formula for Newton's method. (Ans: $\boldsymbol{\alpha}_{\mathrm{r}+1}=\boldsymbol{\alpha}_{\mathrm{r}}-\mathbf{f}\left(\boldsymbol{\alpha}_{\mathrm{r}}\right) / \mathbf{f}^{\prime}\left(\boldsymbol{\alpha}_{\mathrm{r}}\right)$).
7. Every polynomial equation of the $\mathrm{n}^{\text {th }}$ degree has exactly
roots.
(Ans: n).
8. $f(x)=\left(x-\alpha_{1}\right) \varphi_{1}(x)$ where $\varphi_{1}(x)$ is an algebraic equation of \qquad degree.
(Ans:($\mathrm{n}-1)^{\text {th }}$).
9. Say True or False: The roots of the given equation are diminished by h, where $h=s u m$ of the roots/factor.
(Ans: False).
10.Say True or False: Reciprocal equation of even degree with unlike signs for its its coefficients, therefore $x^{2}-1$ is a factor.
(Ans: True).
10. If $x^{5}-5 x^{4}+9 x^{3}+a x^{2}+b x-1=0$ is a reciprocal equation find a, b. (Ans : $\mathbf{a}=\mathbf{- 1 , b}=\mathbf{5}$). 12. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of the equation $\mathrm{a}_{0} \mathrm{x}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{x}^{\mathrm{n}-1}+\ldots+\mathrm{a}_{\mathrm{n}}=0$ transform the equation whose roots are $-\alpha_{1},-\alpha_{2}, \ldots,-\alpha_{n}$. (Ans : $\left.\mathbf{a}_{0} \mathbf{x}^{\mathrm{n}}-\mathbf{a}_{1} \mathbf{x}^{\mathrm{n}-1}+\ldots+(-1)^{\mathrm{n}} \mathbf{a}_{\mathrm{n}}=\mathbf{0}\right)$. 13. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of the equation $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ transform the equation whose roots are $1 / \alpha_{1}, 1 / \alpha_{2}, \ldots, 1 / \alpha_{n}$. (Ans : $\mathbf{a}_{0} \mathbf{x}^{\mathrm{n}}+\mathbf{a}_{1} \mathbf{x}^{\mathrm{n}-1}+\ldots+\mathbf{a}_{\mathrm{n}}=\mathbf{0}$). 14. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of the equation $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ transform the equation whose roots are $k \alpha_{1}, k \alpha_{2}, \ldots, k \alpha_{n}$. (Ans : an $x^{n}+k \mathbf{a}_{1} \mathbf{x}^{n-1}+\ldots+k^{n} \mathbf{a}_{n}=\mathbf{0}$).

15 . Form the quadratic equation one root is $\sqrt{2}$.
16. Form the quadratic equation one root is $1+i$.
17. Find the sum of the roots of the equation $x^{3}+p x^{2}+q x+r=0$.
18. Find the product of the roots of the equation $x^{3}+p x^{2}+q x+r=0$.
(Ans: $\mathrm{x}^{2}-2=0$).
19. Reciprocal equation of odd degree with unlike signs for its its coefficients, therefore
(Ans: 1).
20. Reciprocal equation of even degree with unlike signs for its its coefficients, therefore
\qquad

Unit II

21. A matrix A for which $A^{k+1}=A$ is called------- where k is a positive integer.
(Ans: Periodic).
22. A square matrix A is called --------- if $\mathrm{A}^{2}=\mathrm{A}$.
(Ans: Idempotent).
23. As the rank of every non zero matrix is greater than or equal to one, to assign the rank-----------
(Ans: Zero).
24. Rank of a matrix is unaltered by elementary (Ans : Transformation). 25. is the normal form of the unit matrix. (Ans : Canonical form).
25. Say True or False : The rank of every n- rowed non singular matrix is n. (Ans: True). 27. Say True or False : The rank of $A \leq r$ if all minors of order ($r+1$) are zero.(Ans: True). 28. Say True or False : The inverse of a matrix, if it is exists, is zero.
29.Say True or False : The operation of transposing and inverting are additive.
(Ans: False).
26. Say True or False : The inverse of a matrix of $A=\operatorname{adj} A /|A|$.
(Ans: True).
27. A diagonal matrix all of whose diagonal elements are equal, is acalled a \qquad
(Ans: Scalar matrix).
28. If $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$ then the order of the matrix A is
(Ans: 2).
29. A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is said to be skew symmetric if \qquad (Ans: $\mathbf{a}_{\mathrm{ij}}=-\mathbf{a}_{\mathrm{ij}}$).
34.If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ then the value of $\mathrm{A}^{\mathrm{T}}=$
(Ans: $\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$).
30. If $\mathrm{A}=\left[\begin{array}{cc}2+i & 1-i \\ 5 & 7\end{array}\right]$ then the value of $\bar{A}=$
(Ans: $\left[\begin{array}{cc}2-i & 1+i \\ 5 & 7\end{array}\right]$).
31. Say True or False: Every diagonal element of a Hermitian matrix is real (Ans: True).
32. Find $A B$, if $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 3 & 2\end{array}\right] B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$
(Ans: $\left[\begin{array}{ll}12 & 14 \\ 10 & 12 \\ 29 & 34\end{array}\right]$.
33. If $r(A) \neq r(A, B)$, then the equations are \qquad
34. If $r(A)=r(A, B)<n$, then the equations are(Ans: Inconsistent).
35. Find the rank of a matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2\end{array}\right]-------------$
(Ans: 3).

Unit III

41. \qquad is the process of computing intermediate values of a function.
(Ans : Interpolation)
42. \qquad is used to find the values outside the interval. (Ans : Extrapolation) 43. In interpolation, the symbol Δ denotes an operation called \qquad operator.
(Ans : Forward difference)
43. In interpolation, the symbol ∇ denotes an operation called \qquad operator.
(Ans : Backward difference)
45.In the difference table, the first differences of y are denoted by \qquad (Ans: $\Delta \boldsymbol{y}$)
44. In the difference table, Δ^{2} is an operator called , \qquad forward difference operator
(Ans: Second order)
(Ans : $\mathbf{y}_{1}-\mathbf{y}_{0}$)
47.The first order forward difference $\Delta y_{0}=$ \qquad
48.The second order forward difference $\Delta^{2} y_{0}=$ \qquad (Ans: $\Delta \mathbf{y}_{1}-\Delta \mathbf{y}_{\mathbf{0}}$)
45. The third order forward difference $\Delta^{3} y_{1}=$ \qquad (Ans: $\Delta^{2} \boldsymbol{y}_{2-} \Delta^{2} y_{1}$)
46. $y=f(x)$ is a given function of x, the independent variable x is called \qquad and the dependent variable y is called \qquad (Ans : argument, entry)
47. Gregory Newton's f interpolation formula is used only for \qquad intervals
(Ans : Equal)
52.In interpolation, we can find the missing values of x using the operator
\qquad and \qquad (Ans: Δ, \mathbf{E})
53.The value of $\nabla \mathrm{y}_{2}=$ \qquad (Ans: $\mathbf{y}_{\mathbf{2}}-\mathbf{y}_{1}$)
(Say true or false)
54.The shifting operator $\mathrm{E}=1+\Delta$
(Ans : True)
(Say true or false)
48. The operator $\mathrm{E}^{-1}=1-\nabla$
(Ans : True)
56.The values of the independent variable are not equally spaced we will use
57.The value y_{0} is called the leading term and the differences $\Delta \mathbf{y}_{\mathbf{0}}, \Delta^{2} y_{0}, \Delta^{3} y_{0} \ldots$ are called \qquad (Ans: Leading differences)
58.If $\mathrm{y}(\mathrm{x})$ is a polynomial of $\mathrm{n}^{\text {th }}$ degree $\Delta^{n+1} y_{0}, \ldots \ldots$ are \qquad (Ans: Zero)
59.The arguments are $\mathrm{x}_{0}, \mathrm{x}_{0}+\mathrm{h}, \mathrm{x}_{0}+2 \mathrm{~h}, \ldots$, here h is called \qquad
(Ans : interval of differencing)
(Say true or false)
60.The operators $\Delta, \nabla, \mathrm{E}$ are linear operators
(Ans : True)

Unit IV

61.The value of $\sinh x=$ \qquad (Ans: $\frac{e^{x}-e^{-x}}{2}$)
62. The value of $\cosh x=$ \qquad (Ans: $\frac{e^{x}+e^{-x}}{2}$)
63. The value of $\tanh x=$ \qquad (Ans: $: \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$)
64.The value of $\cot \mathrm{hx}=$ \qquad (Ans: $\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$)
65. The value of $\cosh x-\sinh x=$ \qquad (Ans: $\mathrm{e}^{-\mathrm{x}}$)
66. The value of $\cosh x+\sinh x=$ \qquad (Ans: e^{x})
67. The value of $\cosh ^{2} x+\sinh ^{2} x=$ \qquad (Ans : cosh2x)
68. The value of $\cosh ^{2} x-\sinh ^{2} x=$ \qquad (Ans: 1)
69. The value of $\sin (i x)=$ \qquad (Ans : i sinhx)
70. The value of $\cos (i x)=$ \qquad (Ans: coshx)
71. The value of $\tan (i x)=$ \qquad (Ans : itanhx)
72. The value of $\sinh 0=$ \qquad (Ans: 0)
73. The value of $\cosh 0=$ \qquad
74. The value of $\tanh 0=$ \qquad
75. The value of $\sinh 2 x=$ \qquad (Ans: $2 \sinh x \cosh x$)
76. The value of $\sinh (-x)=$ \qquad (Ans: - $\sinh x$)
77. The value of $\cosh (-x)=$ \qquad (Ans: coshx)
78. The value of $\sinh ^{-1} x=$ \qquad $\left(A n s: \log _{\mathrm{e}}\left(\mathrm{x}+\sqrt{x^{2}+1}\right)\right.$
79. The value of $\cosh ^{-1} y=$ \qquad $\left(\right.$ Ans $: \log \left(y+\sqrt{y^{2}-1}\right)$
80. The value of $\tanh ^{-1} y=$ \qquad (Ans : $\frac{1}{2} \log \left(\frac{1+y}{1-y}\right)$

Unit V

81. If $\mathrm{x}=\mathrm{r} \cos \theta$ and $\mathrm{y}=\mathrm{r} \sin \theta$, then the jacobian value is \qquad (Ans:r)
\qquad is the equation of the conic in general.
(Ans $\left.: \frac{t}{r}=1+\mathrm{e} \cos \theta\right)$
83.In the general conic equation, if \qquad it is an ellipse
(Ans : e $<\mathbf{1}$)
84.In the general conic equation, if $\mathrm{e}=1$ it is a \qquad (Ans : parabola) 85.In the general conic equation, if \qquad it is an hyperbola
(Ans : e>1) 86.In the general conic equation, if $\mathrm{e}=\sqrt{2}$ it is a \qquad
(Ans : rectangular hyperbola)
82. The reciprocal of the curvature of a curve at any point is called the
\qquad of curvature
(Ans : radius)
83. Find the radius of curvature at $x=\frac{\pi}{2}$ on the curve $y=\sin x$ is \qquad (Ans:-1) 89. Curvature of a curve $y=f(x)$ is defined as \qquad (Ans: $\frac{d \Psi}{d s}$)
84. The radius of curvature of a curve $y=f(x)$ is defined as \qquad (Ans : $\frac{d s}{d \Psi}$)
85. The curvature of a circle of diameter d is \qquad (Ans: $\frac{2}{d}$)
86. The curvature of the curve $x^{2}+y^{2}=r^{2}$ is \qquad (Ans: $\frac{1}{r}$)
87. If $x+y=u, 2 x-3 y=v$ find J ?
88. The curvature of the straight line $y=m x+c$ is \qquad
89. The radius of curvature of the straight line $a x+b y+c=0$ is \qquad
(Ans: $\frac{-1}{5}$)
(Ans: 0)
90. If $\mathrm{x}=\mathrm{r} \cos \theta$ and $\mathrm{y}=\mathrm{r} \sin \theta$ then the value of $\frac{\partial(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)}=-$
\qquad (Ans: ∞) (Ans: 1)
91. The radius of curvature of $y=\sin x$ is \qquad (Ans: -1)
92. The radius of curvature of the curve $x=2 \cos \theta, y=2 \sin \theta$ is \qquad (Ans: 2)
93. The radius of curvature of the curve $y=\cos x$ at $(0,1)$ is \qquad (Ans:-1) 100 . The radius of curvature of the curve $y=4 \sin x$ at $x=\frac{\pi}{2}$ is__

Staff in charge

Signature of the HoD with Seal

